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High frequency limiting virtual-mass coefficients of 
heaving half-immersed spheres 

By A. M. J. DAVIS 
Department of Mathematics, University College London 

(Received 26 April 1976 and in revised form 23 September 1976) 

High frequency surface waves are generated by the forced heaving of either two 
half-immersed spheres in infinite water or by a half-immersed sphere in a hemispherical 
lake. The virtual-mass coefficients can be found, to leading order, in terms of wave- 
free limit potentials. 

1. Introduction 
Two spheres S, and S2 with comparable radii a and b are half-immersed in infinitely 

deep, incompressible, inviscid fluid under gravity. Cartesian co-ordinates (z, y, z )  are 
chosen with z measured vertically downwards and the x axis along the line of centres 
of the spheres, i.e. the origin is in the undisturbed free surface F and for convenience 
is between the spheres. These are forced to heave with small constant amplitudes, 
possibly different, but the same period 2n/a about the equilibrium position and the 
fluid motion generated is assumed small enough for the equations to be linearized. 
With surface tension also neglected, the velocity potential, which is of the form 

throughout the fluid and the boundary conditions 

K$+a#/az = 0 at z = 0 ,  (1.2) 

a($-- Uz) /an  = 0 on S,, (1.3) 

where K = v2/g and g is the gravitational acceleration, and 

a(# - aUz)/an = 0 on S,, ( 1 . 3 ~ )  

where a/an denotes the normal derivative directed into the fluid and U and la\ U are 
the respective amplitudes of the heave velocities. On physical considerations, the 
complex factor a: may be chosen as zero (8, fixed) or assigned a value such that 1.1 is 
neither large nor small compared with unity. The remaining condition on # is that 
only outgoing waves be present at  infinity. 

Only short waves will be considered, in which case K-l is small compared with the 
radius a of S, and the surface wave disturbance is essentially confined to a layer of 
thickness O(K-') below the free surface. The dimensionless quantity 

N = Ka = a2a/g 
I1 
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is therefore large and i t  is helpful to write 

where #o is the limit potential, satisfying (l.l), (1 .3) ,  ( 1 . 3 ~ )  and the limiting forms 
of (1.2) and the radiation condition as K+m, namely 

# o = O  on P anda t  m. (1.6) 

Then #o is wave free and, because #o - K-I a$,/az satisfies (1.2), the conditions on 4, 
are of the same type as those on #I. The justification for the introduction of is that, 
according to (1 .3)  and (1.3a), a#pn vanishes at the intersections of the spheres with F. 
The methods of Davis (19763) are, except for the coefficient of N-l in (1.7), readily 
adapted for the presence of more than one such immersed body and hence the results 
are applicable to the current problem. 

The virtual-mass coefficients V, and V, of the spheres S, and S2 respectively are 
given by 

The work done in one time cycle by each sphere on the fluid is 

and has a non-zero first-order term, in general, since $o is now complex. For this 
reason, the damping coefficients, defined like V, and V ,  but with the imaginary parts 
taken, are O(1). But, by applying Green's theorem to $ and 7 throughout the fluid 
region. it follows that 

= 0 ( ~ 2 a 3 ~ - 4 ) .  

Hence, to the first few orders of magnitude, the input of energy from one sphere to the 
fluid is absorbed by the other sphere. 

The general case outlined here is discussed in $ 5 ,  the intermediate sections being 
concerned with some simplified situations. With 01 = 1 and b = a, the spheres may 
touch or be separated, the latter case being better described as a sphere near a vertical 
wall. Also considered is a heaving sphere in a hemispherical lake, a situation where no 
energy can be lost. In  the symmetric cases and for the single sphere, the suffixes are 
dropped from S and V .  

It is useful to compare the present results with the rigorous results for a single sphere 
in infinite fluid (Davis 1971), viz. 

V N *-3/16N, (1.8) 

(1.9) 

and for a sphere at  the centre of a hemispherical lake (Davis 1975a), viz. 

T' N +[l + 3/(h3 - l)]  + O(N-l ) ,  

where h (>  1) is the ratio of the radii. 
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Owing to the more complicated geometries, only the terms of order 1 are sought here. 
However, unlike the corresponding two-dimensional problems involving cylinders 
(Davis 1976a), closed-form solutions are not available and the second-order differen- 
tial and difference equations must be solved numerically, the results being displayed 
at various places in the subsequent text. 

The limiting problems then considered are equivalent to those of a sphere in semi- 
infinite fluid, a sphere in a spherical container and two spheres in unbounded fluid, 
the motion being perpendicular to the line of centres. Early work on the last problem, 
using an approximation based on successive images, is described by Basset (1888, 
chap. 11) and, more briefly, by Lamb (1932, @99, 138). Their formulae for kinetic 
energy correspond essentially to those for the virtual masses. 

Motion along the line of centres is also included by these authors, and, being axi- 
symmetric, provides a simpler problem to attack by the methods employed here. 
Such work has already been published by Majumdar (1961) for spheres in contact 
and by Weihs & Small (1975a) for separated spheres. Weihs & Small (1975b) also 
published work on the contact case but they represented the velocity potential by 
a summation rather than an integral and hence could not obtain a correct solution. 
Tangent-sphere and bispherical co-ordinates have also been used, for axisymmetric 
Stokes flow past two spheres, by Davis et al. (1976). 

The potential flow past a sphere tangential to a plane was shown by Latta & Hess 
(1973), using the method of inversion, to have a velocity singularityof order rd2-2 at 
the point of contact. 

Thus the presentation adopted here, i.e. exploitation of co-ordinate systems to set 
up exact equations which are then solved numerically, appears to be new. 

2. Equal spheres in contact 

with the same amplitude. Defining tangent-sphere co-ordinates ( E ,  7,O) by 
Here the spheres have a common radius a, touch at the origin and heave in phase 

the sphere boundaries are given by (except on 
the x axis, where 6 = 0) and the fluid region by 0 6 6 6 00, 171 6 1, 101 6 in. The 
symmetry implies that $([, 7, 0) is an even function of 7 and conditions (1.3) and (1.6) 
on the limit potential $o are now 

= k 1, the free surface by 8 = k 

$o = 0 when Ccose = 0. 

In these co-ordinates, Laplace’s equation is reduced to cylindrical form by writing 

$0 = (E2+?12) )X0 ,  

whence ( 1.1) becomes 
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where a(0) = 0 since the integral is to be convergent. a(s)  is determined from (2.2) 
and (2.3), which yield 

Since also lom Jl(s'$) s ecsds = <(t2 + l)-*, 

the inversion of the Hankel transform in (2.5) shows that a(s)  satisfies the differential 
equation 

1 ) 
d2a I d a  1+-coths a = 4 ~ e - ~  (s >, 0).  
ds2 s ds 

At large s, a N al, with exponentially small error, where 

a; - s-h; - (1 + s-l) a, = 4s e-+ 

and the exact solution for a, is 

a1 = ( A  - s2) e-S+B(s - a) e3. 

Since the exponentially growing solution is inadmissible, cc must tend to zero as s +- 00. 

a = 2 ~ ~ e - y  1 + 8s + As2 + . . .) 
while the two series solutions in the complementary function have first terms s1+d2 

and s-(d2-1) respectively. The latter must be rejected here since a(0) = 0. 
It is readily shown that the vertical velocity on the z axis is given by 

At small s, a particular solution of (2.6) is 

where 

The behaviour of the integral as 6 -+ co is determined by that of P(s) at small s. Now 
LY = 0(s1+d2), i.e. p = O(s-1+d2), as s+ 0; hence 

= O(tz -42)  = O(zd2-2) as z+O 
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and the velocity is found to be unbounded a t  the point of contact, in agreement with 
Latta & Hess (1973), whose solution by inversion is less simple than that presented 
here but, of course, involves a differential equation [their equation (13)] equivalent 
to (2.6). 

Numerical computation was necessary to solve (2.6) for a and, in particular, to 
evaluate the integrals involving a which appear below. 

The virtual-mass coefficient is given, from (1 .7) ,  (2.1) and (2.2), by 

on substitution of (2.3) and (2.4). Using (2.5), this can be written as 

v.7- 6 / 0 m a ( s ) d s / m m d ( + 2 4 / 0  0 (t2+-tP * f 3  d[ 

= 2 [1+3Joma(s)e-sds] = 0.621. (2.7) 

Consider now the waves radiated to infinity. As R = (x2  + y2)* -+ 00, 

6 N jjT-l$l N Np1e-K~ $(x, Y 1 

(according to Davis 1976b), where 4 is the solution of the two-dimensional wave 
equation 

( V 2 + K 2 ) $ =  o on P (171 ,< 1 , O  ,< 5 < co) 
satisfying 

_ -  a’-2a2(%) a t  7 =  * I  
a7 a7 ax z=o 

and the radiation condition 

lim Rt(a$/aR-iK$)+ 0 as R-too. 
R-+ m 

Leaving aside the interference between the spheres, the essential features of the distri- 
bution of wave radiation to infinity can be obtained from simple use of ray theory. 
Except in the shadow regions containing the x axis, there is propagated in each 
direction a ray from each sphere. Since the rays leave the spheres normally, the 
distribution of wave radiation is determined by the function (a$/an),=,,. From (2.1), 



310 A .  M .  J .  Davis 

after using (2.5). The values at = 0 , l  are respectively 

6 +J sa(8) ds = 0.109, 
0 

6 + 4 42 1 J,(s) a(8) ds = 4.574. 

(The corresponding constant value for a single sphere is 3.) Multiplying the f = 1 
value by 2 and squaring both, it  is seen that the energy radiated along the x axis (the 
axis of the spheres) is negligible compared with that radiated along the y axis by 
a factor of 8000 approximately. 

0 

3. Heaving sphere near a wall 

lies in the plane x = 0. Defining bispherical co-ordinates (p, q, 0 )  by 
Here the centre of a sphere of radius a is at distance d ( > a )  from a vertical wall which 

c sinh p c sin 7 
X =  (sin 8, cos 8), 

coshp - cos q ’ (” = coshp - cos q 

the wall is given by p = 0, the sphere boundary by p = po, where 

c = asinhp,, d = acoshpO, (3.2) 

and the free surface by 8 = & in (except on the x axis, where 7 = 0 or n). The fluid 
region is 0 < p < p,, 0 < q < n, 101 < in and the wall condition 

Qbpp = 0 at p = o (3.3) 

requires that the velocity potential be an even function of p. Thesituationisequivalent 
to that of equal spheres heaving with the same amplitude and phase. Conditions (1.3) 
and (1.6) on the limit potential g50(p, q, 0)  are now 

sinh po sin q - 840 = - u c  
aP (coshp, - cos q)2 

cos8 at p =po,  

g50 = 0 when sinqcose = 0. 

The appropriate solution of Laplace’s equation for q50 is of the form 

m 

q50 = Uc(coshp-cosq)4~ancosh (n+&pPk(cosq)cosB 
n = l  

13.4) 

(3.5) 

(Morse & Feshbach 1953, p. 1299), the coefficients being determined by (3.4) and 
such that a, = o(exp ( - np,)) as n+m. 

In  virtue of the series expansion 

(Morse & Feshbach 1953, p. 1300) and the recurrence relation 

(2n+l)cosqP~(cosq) = nP~,,fcosq)+(n+l)P~,(cosq) (12. > 11, 
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(n + 2) a,,, sinh (n+ $)p, - [(n + 1) sinh (n + $)p,+ nsinh (n - +)pol a, 
+(n- l)a,-,sinh(n-+)p, = 42/2exp[-(n+~-)po]sinhp0 (n 2 1). (3.7) 

The apparent appearance of the undefined a, is nullified by the factor n- 1, 
i.e. only one condition is required to determine a unique solution and this is that 
a, = o(exp ( -  npo)) as n+m, in order that (3.5) be convergent throughout the fluid 
region. Unlike the corresponding torus problem (Davis 1975b), the sum of the coeffi- 
cients on the left-hand side of (3.7) is non-zero; this is because Pk has appeared instead 
of P,. Since a closed-form solution is not available, (3.7) must be solved numerically. 
The convergence is improved by writing 

a, = - 2/2exp[-(n+f)hl+b,, (n 2 I), 
sinh (n + +) po 

whence (3.7) becomes 

(n + 2) b,,, sinh (n + Q)pO- [(n + 1) sinh (n + $)po + nsinh (n - $)pol bn 

+(n-l)b,-,sinh(n-&)p, = - J2 [ - (2n+ l)pO1 sinhp, (n 2 1). (3.9) sinh (n + 4) po 

The virtual-mass coefficient is given, from (1.7), (3.1) and (3.4), by 

cos 8 d0 d7 3 n bn Uc2 sinh p, sin2 7 
V - -  2?ra3U2sO /-+, ( - " ) P ~ o  (coshp,- c0s7)~ 

m sin2 7 d7 
= -Qsinh4po n = l  2 a , c o s h ( n + ~ ) p o / o n P ~ ( c o s ~ )  (cash po - cos 7)% 

after substituting (3.2) and (3.5). But, from (3.6), 

n sin2yPi(cos 7) dy = * n(n + 1) exp [ - (n + 4) p]. s 0 (coshp - cos 7)t 3 
whence sinhp (3.10) 

Then the expression for V simplifies to 

m 
V - - J2sinhgpo I= n(n + 1)a,exp [ - (n + f)p,] cosh (n + f ) p o .  (3.11) 

n = l  

Since the coefficients {a,} satisfy (3.7), this can be rewritten as 

V - sinh3po C n(n + 1) (8 exp [ - (2% + l ) p O ]  + 3 42 an exp [ - (n + 8)pOI sinh (n + ! i ) p ~ }  
m 

n=l  
m 

= + 3 4 2  sinh3po n(n + 1) b,exp [ - (n + +)pol sinh (n + $)p,  
n=l  

after substituting (3.8). Defining {B,; n 3 1) such that 4 2  B, = n(n + 1 )  b, sinh3po, it 
follows that 

V -  + + 3  2 B,(1-exp[-(2n+l)po1}. (3.12) 
m 

n = l  
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Pl dla V V (Lamb) 

0.52620 (7) 0.52552 1 1.5431 
1.5 2.3524 0.50724 (4) 0.50720 
2 3.7622 0.50176 (3) 0.50176 
3 10.068 0.50009 (2) 0.50009 
4 27.308 0.50000 (1) 0.50000 

TABLE 1 

The coefficients are determined by (3.9), which, by writing 

a, = sinh (n - +) po/sinh (n + 8) p,, 
can be simplified to 

(n + 1 )  exp [ - (2n + l ) p O ]  sinh4po 
sinh (n + 4) po sinh (n + Q) po = -  (n 2 I) ,  (3.13) 

where B, = 0 by definition and B, = o(n2exp ( -quo)) as n+m. Then B, is of the 
form B, = - B!$ + B, B!!), where 

n + l  n+lanB(l) - ( n + 1)  exp { - (2n + 1 )  pol sinh4po 
BE$, - (T+an)  @+y - sinh (n + &) po sinh (n + Q) p0 

(n 2 1, Bdl) = B(') 1 = 0) ,  
B!!!+l-(n+an)B$+-a,B!!Ll=O n + l  n + l  ( n >  1, Bd2)=0, Biz)=  I ) .  

n 

B, must be determined by applying the condition at infinity. Now 

an = ~ X P  ( - ' P O )  + O ( ~ X P  (-2n~o))  
and the exact solution of 

(3.14) 
n+1  

n A,+, - r+ + exp ( - 2p0)) A, + - exp ( - ~p,)  A,-' = o 

is A, = Cexp ( -  2np0) + D[n(exp (Zp,) - 1) - 11, i.e. h,-A,-,-+constant as n+m. It 
is also seen why the substitution (3.8) improves the convergence, namely by making 
the right-hand side of the difference equation decay exponentially faster than both 
parts of the complementary function. The sequences {B!;)} and {B!!)} must have the 
same property and, defining 

C(j) = lim (a!) - B!!L,) (j = I ,  z), 
n--t 00 

it  follows that B, = C(1)/C(2). The number of iterations required to determine Ccj) to 
a given accuracy is evidently a decreasing function of po and is indicated in brackets in 
table 1, obtained using a pocket calculator. Since the method depends on the exponen- 
tial decay of exp ( -npo), the number of iterations required increases rapidly as po 
decreases below 1.  For example, twelve iterations proved to be insufficient for the 
case po = 0.5. 
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The last column of table 1 shows the value of V given by the approximate formula 

v N a( 1 + +3/d3), 

which is equivalent to that quoted by Lamb [1932, $99, equation (7)]. 
Recalling that V - Q when the wall is absent [equation (1.8)]) it is seen that the 

sphere must be within a few radii of the wall for the latter to have a significant effect 
on the virtual-mass coefficient, which is evidently a decreasing function of po  with 
limiting value as p,+O given by (2.7). 

4. Sphere within a hemispherical lake 
Suppose that the radius of the lake is Au and that its centre is at a distance va 

(0 < v < A -  1) from that of the heaving sphere of radius a. The case v = 0 has been 
studied rigorously (Davis 1 9 7 5 ~ )  and appears here only as a limiting case. Since the 
fluid is now of finite extent, there is no radiation of wave energy and the level of the 
mean free surface oscillates with amplitude Ulu (A2- 1) .  Hence the linearization of 
condition (1.2) is consistent with that of (1.3). 

Using the bispherical co-ordinates defined by (3.1)) the lake boundary is at  p = p* 
while ,u = po on the sphere. From (3.2), the values po  and ,u* are determined from the 
relations 

Hence 
sinhp,, = Asinhp* = cia, sinh(po-p*) = vsinhp*. 

coshpo = (A2 - 1 - Y ' ) / ~ v ,  coshp* = (A2 - 1 + v2)/2vA, 

c2/a2 = ( A  + v + 1 ) ( A  + v - 1)  ( A  - v + 1) ( A  - v - 1)/4v2. 

With the fluid now of finite extent, resonance is possible and, since the surface wave 
disturbance is essentially in a thin layer below F ,  the resonant frequencies are asymp- 
totically those of the problem obtained by replacing the sphere and lake boundary by 
vertical circular cylinders which intersect F in the same circles. Removing the evK2 
factor, these resonant frequencies are the eigenvalues of the problem 

a$pp = o at  p = p*,po. 

In the absence of resonance, the decomposition (1.5) of $ is possible, and the con- 
ditions on $o are the same as in the previous section except that (3.3) is applied at 
p = p* instead of p = 0. Thus, proceeding as before, it  readily follows that 

The coefficients of cosh (n + 4)p and sinh (n + Q ) p  are chosen in this form for con- 
venience. Equation (3.5) is recovered by setting p* = 0 and t, = a,sinh (n+ &)po,  
u, = 0 (n 2 1). 
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In  order that q50 has the given normal derivatives at p = p*,po, the coefficients 
{t,, u,} must satisfy the coupled second-order difference equations 

(n+2)t,+,- [(2n+ 1) coshpo+coth(n+Q)p'sinhpo]t,+ (n- l)tn-l 

sinh po 
sinh (n + Q) p' 

- u, = 4J2exp[-(n+Q)posinhpo (n > l), ( 4 . 2 ~ ~ )  

sinhp* 
t = 0 (n > l),  (4.2b) 

+sinh(n+*)p' 

where p' = po -PI*. These determine {t,, u,; n > 2 )  in terms oft, and ul, which must 
be chosen such that t,,u,+O as n-tco. The convergence of the computation is 
improved by subtracting out the leading term - J2 exp [ - (n + Q)pO] of t,, as in the 
spherelwall case. 

The limit v+ 0, in which the sphere approaches the centre of the lake, is given by 
p,, p* --f 00, p' 4 log, A. In  this limit, a 'singular perturbation situation occurs because 
the ratios of the coefficients of tn+, and t, in ( 4 . 2 ~ )  and of u,+~ and u, in (4.2b) both 
tend to zero. 

By comparison with (3.11), the virtual-mass coefficient is given by 

which by means of ( 4 . 2 ~ )  can be rewritten as 

V N 4+3sT, ,  
n = l  

(4.3) 

where 

Defining also 

T, = n(n + 1) {J2t, + 2 exp [ - (n + +),uo])exp [ - (n + +)pol sinh3po. 

U, = n(n + 1) J2 u, exp [ - (n + +)p*] sinh3po, 

the difference equations (4.2a, b )  become 

n(cothpo+ i)Tn+1-[(2n+ 1)cothyo+coth(n+B)~l']T,+(n+1)(cothpu,-1)T,-l 
- [coth(n+~)~'- l ]{U,-2~(n+l)exp[-(2n+l)po]sinh3po} = 0 (n > I) ,  (4 .4~~)  

n(cothp*+ 1 )  U,+,- [(2n+ l )p *  - coth(n+t)p'] un+ (n+ 1) (cothp* - 1) un-1 
+ [coth (n+B)p'+  11 {T,- 2n(n+ 1)exp [- (2n+ l)pn] sinh3pu,} = 0 (n 2 11, 

where T, = U, by definition and T, and U, are exponentially small as n + 00. 

(4.4b) 

I n  the limit po+ co, pJ +log,A, equations (4.4u, b)  take the form 
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h = 4  v = 2  - - 
0 0.52381 4 054388 (20) 
0.5 0.52388 (10) 
1. 0.52660 (10) 6 0.50903 (20) 
1.5 0.53229 (20) 
2 0.54388 (20) 8 0.50338 (10) 
2.5 0.56937 (50) - 

TABLE 2 

V V h V 

The required solution is 
1 - A3 - T, = Un = 0 (n > 1). T1 = 2(A3- 1)’  u, = 2(,43- 1)’ 

Then, from (4.3), 

in agreement with the leading term of the rigorous result (1.9). Returning to consider 
finite values of po,  it is readily seen that the general solution of (4.4a, b )  is such that, 
as n-too, T, N A, and U, - v,, where the A, satisfy (3.14) and 

nexp (p*)  ( v , + ~  - v,) - (n + 1) exp ( -p*) (v, - v ~ - ~ )  = 2h, sinhp*. 

v N &[l+ 3/(A3- I)], 

The complementary sequence of this equation is similar to that of (3.14), namely 

v, = A{n[l- e x p ( - 2 p * ) ] + I } e x p ( - 2 n p * ) + B .  

But a particular solution is less easily found and the behaviour at  large n of the full 
complementary sequence of (4.4a, b )  is more complicated than that of the difference 
equations in the previous or following sections. 

However, the virtual-mass coefficient can be computed to sufficient accuracy by 
truncating the infinite set of linear relations between terms of the sequences {T,} and 
{U,}. This is equivalent to writing T, = U, = 0 for all n > N ,  where 2N is the number of 
equations retained. A single sequence {W,; 1 < m < 2 N )  is obtained by defining 
&n-l = T, and W,, = U, (1 < n ,< N ) .  Then, from (4.4a, b) ,  it  is readily seen that the 
matrix of coefficients of {W,} is of band-diagonal form, all non-zero elements being 
confined to within two lines of the diagonal. Using the DGELB subroutine on an 
IBM 360 computer, the simultaneous equations were solved for various values of 
,uo and p* and the contributions of {T,} to V ,  given by (4.3), computed. Accuracy can 
be checked by increasing N ;  the value used is indicated in brackets in table 2, which 
displays values of V for various v a t  given A, showing the effect on V of moving the 
sphere from the centre towards the boundary of the lake, and for various h at given v, 
showing the effect of increasing the size of the lake. 

5. Two separate spheres 
Here the general case described in the introduction is considered. Using the bi- 

spherical co-ordinates defined by (3.1), the boundaries of the spheres 8, and 8, are 
given by p = p1 and p = -pz respectively, where 

a = c cosechp,, b = c cosechp,. (6.1) 
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If D is the distance between the centres of the spheres, then 

D = c(cothpl + cothp2), 

and p,, p2 and c are determined, when a, b and D are given, by the formulae 

coshp, = (D2+ a2 - b2)/2aD, coshp2 = (D2 + b2 - a2)/2bD, 

c2 = ( D  +a+ b) (D + a -  b) ( D  - a + b) (D-a -  b)/4D2. 

The limit potential q50(p, 7,O) is of the form 

x p;(cOs7) cos e, (5.2) 

where the coefficients {t,, u,; n 2 I} are determined by (1.3) and (1.3a),  which in the 
current co-ordinates become 

sinhp, sin 7 a 0 o = - &  cos6 a t  p = p,, 8P (coshpu, - cos 7)2 

sinh ,u2 sin 7 
(coshp2- C O S ~ ) ~  

_ -  cos0 a t  p = -p2. " 0  - a U c  
8P 

(5.3) 

( 5 . 3 4  

If p1 = p 2  = po, Qo is the sum of 4( 1 +a) times the solution (even in p) found in $ 3  
and i(1--31) times t,he corresponding odd solution, obtained by replacing (3.3) by the 
condition Qo = 0 a t  p = 0. 

Whenpu, + p2, the two sets of coefficients satisfy the coupled second-order difference 
equat,ions 

(n + 2) t,+l - [(2n + I)  coshp1+ sinhp, ~ 0 t h  (n  + 4) ( ~ 1  +,US)] tn + (n - 1) tn-1 

u, sinh p, - = 4 4 2  exp [ - (n + 4) pl] sinhp, 
sinh (n + 4) (P1 +P2) 
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The virtual-mass coefficients of the spheres, defined by 

+ 3 sinh3p1 Re 2 Tn, 

ally by the formulae 
03 

V, N 

n = l  

m 

n = l  
V, N 4 + 3 sinh3pz Re U,, 
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(1.7), are given asymptotic- 

which are obtained by substituting (5.1)) (5 .2 ) ,  (5.3) and (5.3a) into (1 .7))  simplifying 
by means of (3.10) and the difference equations as in $8 3 and 4, and finally substituting 

The linearity of (5.5) shows that Tn and Un (n 2 1) are of the form T*,+aT*,* and 
UZ + aUZ*, where T*,) etc., are real functions of p l  and pz. The symmetry of (5.5) then 
implies that 

Hence if {T:, U*,} are found by setting a = 0 in (5 .5 ) ,  then {TZ*, U*,*} can be obtained 
by interchanging p1 and ,uz in the same calculation, a 

(5.4). 

T:*(Pl)PZ) = ~x%LLl), U~*(rul)LLZ) = T:CuZ)Pl). 

computation than altering the inhomogeneous terms. It 
metry that 

as expected. Indeed, (5.6) have the form 

M P l )  PZ) a) = v,(Pz, Pl) a-l) 

V, = P ( P ~ ) P ~ , )  + (Rea) Q(pi)/d? 

where 

simpler adjustment to the 
also follows from this sym- 

m -l 

(5.7) 

It remains to compute P and Q for various values of p1 and pz. At large n, the 
sequences {T,) and { U,} each satisfy equations like (3.14) (with po replaced by p l  and p2 
respectively) and so in general are predominantly linear functions of n. Tl and Ul must 
be chosen to annihilate this linear behaviour, leaving only terms with exponential 
decay in {Tn) Un}. Setting a = 0 in all subsequent discussion of (5.5), the truncation 
procedure described in the previous section was first tried. However, when p l  < pz ,  
the linear behaviour was not annihilated from the sequence {TZ} and hence an exten- 
sion of the method used to solve (3.13) was necessary. 

The sequences can be decomposed in the form 

T:= T$+TTTT',2)+UfT(n3), U g =  U',1)+TTU',2)+U*U(3) 1 n (n 2 I) ,  

where {TE), U:)} is the particular solution such that Ti1) = 0 = U p )  and the others 
are independent pairs of complementary sequences having 

T(2) = 1 = u13) and Ti3) = 0 = UlZ). 1 

After computing sufficient terms of each of the three pairs ofsequences, the constants, 
identified as the initial terms T: and U:, are chosen to annihilate the linear terms in 
{TZ) UE}, which sequences are then found and substituted into (5.8) to obtain the 
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ru1 P2 

0.25 1 
0.5 1 
1 1-5 
1 2 
1.5 2 
0.5 0.5 
1 1 
1-5 1.5 
2 2 

alb 
4.6522 
2.2553 
1.8118 
3.0862 
1-7033 
1 
1 
1 
1 
2 
2 
2 
3 
3 
4 

D l b  
6.3414 
4.0862 
5-1482 
8.5244 
7.7691 
2.2553 
3-0862 
4.7048 
7.5244 
4 
6 
8 
6 
8 
6 

P(P,, P2) 

0.50065 
0.50118 
0.500 14 
0.50003 
0.50001 
0'50671 
0.50067 
0.50004 
0.50000 
0.50095 
0*50007 
0.50001 
0.50024 
0.50004 
0-50058 

TABLE 3 

&(PI* ~ 2 )  

0.00296 
0.01103 
0.00550 
0*00121 
0.00160 
0.06627 
0.02553 
0.00720 
0.00176 
0.01 174 
0.00347 
0.00146 
0.00347 
0.00 146 
0.00348 

P(P29 Pl) 
0.50916 
0.50360 
0.50020 
0.50005 
0.50001 

0.50218 
0.50010 
0.50001 
0.50064 
0.50007 
0.50435 

Q @ 2 ,  pi) 
0.29840 
0.12653 
0.03270 
0.03559 
0.00790 

0.09394 
0.02 7 7 8 
0.01 172 
0.09380 
0.03955 
0.22302 

functions P and Q in (6.7). In deriving table 3 above, it was only in the first and last 
cases that it was necessary to consider more than 20 terms of each sequence. 

According to (5.7), P(p l ,p2 )  measures the virtual-mass coefficient of S, when S, is 
fixed while Q(pl,p2) gives the contribution due to the motion of S,. The tabulated 
values indicate that the influence of larger sphere on a smaller sphere is greater than 
vice versa, as expected on physical grounds. 

The simple formulae given by Lamb 11932, $99, equation (S)] are equivalent to the 
approximations 

P(P1,PZ) = HI + $a3b3/D6) c! P(PZ>Pl),  

Q(p1,p2) 2: $b3/D3, Q(p2,pJ 2: $a3/D3. 

Agreement is excellent €or both values of Q but poor €or P, particularly P(p2 ,p l )  
when y, > y,. The more accurate formulae of Basset [ISSS, $229, equation (43)] give 
good agreement for P(p l ,  p2) but still cannot predict the above-listed values of 
P(p2,  p,). Evidently the method of successive images furnishes a poor approximation 
to the virtual mass of a smaller sphere heaving in the presence of a larger fixed sphere. 

The work done in one cycle by S, on the fluid is, to first order, 

#n2a3QiIma) Q(p1,~z) 

by comparison with (1.71, and, as explained in the introduction, must equal the first- 
order energy absorbed in one cycle by s,, namely 

Consequently 
- #n2b3]aI2U2f(Ima-l) Q(P2,Pl) .  

a3Q(~1,p2) = b 3 Q ( ~ 2 7 ~ 1 ) ,  
00 

i.e. Q(p2,p1)/Q(p1,p2) = sinh3p2/sinh3pl and C U2 is symmetric in (pl,p2). so the 
n=l  

effect of the motion of one sphere on the virtual-mass coefficient of the other is pro- 
portional to the cube of its radius, i.e. its volume. 
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Another physically expected result indicated by the calculations and proved to be 
true in the cylindrical case is the positivity of Q, which, owing to the time dependence 
being e-iat, shows that the sphere with phase lag absorbs energy from theoneoscillating 
in advance. 

It is interesting to examine how V, and V,, given by (5.7), depend on the phase of a. 
Suppose, for convenience, that 1.1 = 1.  Since Q > 0, the maximum values of V, and V, 
both occur at  a = 1, while the minimum values are both at a = - 1. In  both these 
cases, there is no exchange of energy. The values of P + Q given for p1 = pz in table 3 
agree with the corresponding values of V in table 1. 

If the phase difference is a quarter of a period (a pure imaginary), then the motion 
of one sphere has no effect on the virtual-mass coefficient of the other. However, in this 
case, the exchange of energy per cycle has its maximum (for given la/). 

The forces required to maintain the forced heaving motions have been shown to be 
maximum when a = 1 and minimum when a = - 1. However the pressures due to the 
fluid motion are such that these in-phase and out-of-phase oscillations are respectively 
stable and unstable in the following sense. If the phase difference changes slightly 
from 0 or 7 ~ ,  then energy exchange takes place and, since it favours the lagging sphere, 
tends in the respective cases to decrease or increase the deviation of the phase of a. 
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